4 resultados para Nefropatía IgM

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives Nosocomial Pseudomonas aeruginosa pneumonia remains a major concern in critically ill patients. We explored the potential impact of microorganism-targeted adjunctive immunotherapy in such patients. Patients and methods This multicentre, open pilot Phase 2a clinical trial (NCT00851435) prospectively evaluated the safety, pharmacokinetics and potential efficacy of three doses of 1.2 mg/kg panobacumab, a fully human monoclonal anti-lipopolysaccharide IgM, given every 72 h in 18 patients developing nosocomial P. aeruginosa (serotype O11) pneumonia. Results Seventeen out of 18 patients were included in the pharmacokinetic analysis. In 13 patients receiving three doses, the maximal concentration after the third infusion was 33.9 ± 8.0 μg/mL, total area under the serum concentration-time curve was 5397 ± 1993 μg h/mL and elimination half-life was 102.3 ± 47.8 h. Panobacumab was well tolerated, induced no immunogenicity and was detected in respiratory samples. In contrast to Acute Physiology and Chronic Health Evaluation II (APACHE II) prediction, all 13 patients receiving three doses survived, with a mean clinical resolution in 9.0 ± 2.7 days. Two patients suffered a recurrence at days 17 and 20. Conclusions These data suggest that panobacumab is safe, with a pharmacokinetic profile similar to that in healthy volunteers. It was associated with high clinical cure and survival rates in patients developing nosocomial P. aeruginosa O11 pneumonia. We concluded that these promising results warrant further trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fully human anti-lipopolysaccharide (LPS) immunoglobulin M (IgM) monoclonal antibody panobacumab was developed as an adjunctive immunotherapy for the treatment of O11 serotype Pseudomonas aeruginosa infections. We evaluated the potential clinical efficacy of panobacumab in the treatment of nosocomial pneumonia. We performed a post-hoc analysis of a multicenter phase IIa trial (NCT00851435) designed to prospectively evaluate the safety and pharmacokinetics of panobacumab. Patients treated with panobacumab (n = 17), including 13 patients receiving the full treatment (three doses of 1.2 mg/kg), were compared to 14 patients who did not receive the antibody. Overall, the 17 patients receiving panobacumab were more ill. They were an average of 72 years old [interquartile range (IQR): 64-79] versus an average of 50 years old (IQR: 30-73) (p = 0.024) and had Acute Physiology and Chronic Health Evaluation II (APACHE II) scores of 17 (IQR: 16-22) versus 15 (IQR: 10-19) (p = 0.043). Adjunctive immunotherapy resulted in an improved clinical outcome in the group receiving the full three-course panobacumab treatment, with a resolution rate of 85 % (11/13) versus 64 % (9/14) (p = 0.048). The Kaplan-Meier survival curve showed a statistically significantly shorter time to clinical resolution in this group of patients (8.0 [IQR: 7.0-11.5] versus 18.5 [IQR: 8-30] days in those who did not receive the antibody; p = 0.004). Panobacumab adjunctive immunotherapy may improve clinical outcome in a shorter time if patients receive the full treatment (three doses). These preliminary results suggest that passive immunotherapy targeting LPS may be a complementary strategy for the treatment of nosocomial O11 P. aeruginosa pneumonia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coxiella burnetii and members of the genus Rickettsia are obligate intracellular bacteria. Since cultivation of these organisms requires dedicated techniques, their diagnosis usually relies on serological or molecular biology methods. Immunofluorescence is considered the gold standard to detect antibody-reactivity towards these organisms. Here, we assessed the performance of a new automated epifluorescence immunoassay (InoDiag) to detect IgM and IgG against C. burnetii, Rickettsia typhi and Rickettsia conorii. Samples were tested with the InoDiag assay. A total of 213 sera were tested, of which 63 samples from Q fever, 20 from spotted fever rickettsiosis, 6 from murine typhus and 124 controls. InoDiag results were compared to micro-immunofluorescence. For acute Q fever, the sensitivity of phase 2 IgG was only of 30% with a cutoff of 1 arbitrary unit (AU). In patients with acute Q fever with positive IF IgM, sensitivity reached 83% with the same cutoff. Sensitivity for chronic Q fever was 100% whereas sensitivity for past Q fever was 65%. Sensitivity for spotted Mediterranean fever and murine typhus were 91% and 100%, respectively. Both assays exhibited a good specificity in control groups, ranging from 79% in sera from patients with unrelated diseases or EBV positivity to 100% in sera from healthy patients. In conclusion, the InoDiag assay exhibits an excellent performance for the diagnosis of chronic Q fever but a very low IgG sensitivity for acute Q fever likely due to low reactivity of phase 2 antigens present on the glass slide. This defect is partially compensated by the detection of IgM. Because it exhibits a good negative predictive value, the InoDiag assay is valuable to rule out a chronic Q fever. For the diagnosis of rickettsial diseases, the sensitivity of the InoDiag method is similar to conventional immunofluorescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Differences in parasite transmission intensity influence the process of acquisition of host immunity to Plasmodium falciparum malaria and ultimately, the rate of malaria related morbidity and mortality. Potential vaccines being designed to complement current intervention efforts therefore need to be evaluated against different malaria endemicity backgrounds. The associations between antibody responses to the chimeric merozoite surface protein 1 block 2 hybrid (MSP1 hybrid), glutamate-rich protein region 2 (GLURP R2) and the peptide AS202.11, and the risk of malaria were assessed in children living in malaria hyperendemic (Burkina Faso, n = 354) and hypo-endemic (Ghana, n = 209) areas. Using the same reagent lots and standardized protocols for both study sites, immunoglobulin (Ig) M, IgG and IgG sub-class levels to each antigen were measured by ELISA in plasma from the children (aged 6-72 months). Associations between antibody levels and risk of malaria were assessed using Cox regression models adjusting for covariates. There was a significant association between GLURP R2 IgG3 and reduced risk of malaria after adjusting age of children in both the Burkinabe (hazard ratio 0.82; 95 % CI 0.74-0.91, p < 0.0001) and the Ghanaian (HR 0.48; 95 % CI 0.25-0.91, p = 0.02) cohorts. MSP1 hybrid IgM was associated (HR 0.85; 95 % CI 0.73-0.98, p = 0.02) with reduced risk of malaria in Burkina Faso cohort while IgG against AS202.11 in the Ghanaian children was associated with increased risk of malaria (HR 1.29; 95 % CI 1.01-1.65, p = 0.04). These findings support further development of GLURP R2 and MSP1 block 2 hybrid, perhaps as a fusion vaccine antigen targeting malaria blood stage that can be deployed in areas of varying transmission intensity.